If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+32x=34
We move all terms to the left:
2x^2+32x-(34)=0
a = 2; b = 32; c = -34;
Δ = b2-4ac
Δ = 322-4·2·(-34)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-36}{2*2}=\frac{-68}{4} =-17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+36}{2*2}=\frac{4}{4} =1 $
| 8(x-6)+5x=30 | | 2u+2.09=17.49 | | 8(x-6)+5x=40 | | 8j=520 | | 22j=20 | | y=3y+28=180 | | w-207=92 | | r-98=176 | | 8=u/20 | | n+73=84 | | 62=v+44 | | 2.25=-0.6a | | 15=w/4+12 | | 2.2x+8.8=4.4 | | x2-30x+345=0 | | y=0.31(11)+13.73 | | 14u=115 | | 2.25=-0.6x | | 5a+4=3a-8 | | 5a+3a=4-8 | | k-5=83 | | 95=5j | | 155+p=275 | | y=350(1.75)^3 | | 52=(4y-8) | | (x+10)=(x+6) | | (2x+8)=(3x-20) | | 7y+3=17(y=2) | | 73-x=238 | | H=-16t^2+40t+30 | | X+4/3=x+5/2 | | 4x-2x=3x+8 |